Exercise 4

(a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$
\frac{2}{x}-\frac{1}{y}=4
$$

Solution

Part (a)
Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{2}{x}-\frac{1}{y}\right)=\frac{d}{d x}(4) \\
2 \frac{d}{d x}\left(x^{-1}\right)-\frac{d}{d x}\left(y^{-1}\right)=0 \\
2\left(-x^{-2}\right)-\left[-y^{-2} \cdot \frac{d}{d x}(y)\right]=0 \\
-\frac{2}{x^{2}}+\frac{y^{\prime}}{y^{2}}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=\frac{2 y^{2}}{x^{2}}
$$

Part (b)

Solve for y first.

$$
\begin{gathered}
\frac{1}{y}=\frac{2}{x}-4=\frac{2-4 x}{x} \\
y=\frac{x}{2-4 x}
\end{gathered}
$$

Then take the derivative.

$$
y^{\prime}=\frac{d}{d x}\left(\frac{x}{2-4 x}\right)=\frac{\left[\frac{d}{d x}(x)\right](2-4 x)-x\left[\frac{d}{d x}(2-4 x)\right]}{(2-4 x)^{2}}=\frac{(1)(2-4 x)-x(-4)}{(2-4 x)^{2}}=\frac{2}{(2-4 x)^{2}}
$$

Plug the formula for y into the result of part (a) to see if the same answer is obtained.

$$
y^{\prime}=\frac{2\left(\frac{x}{2-4 x}\right)^{2}}{x^{2}}=\frac{2}{x^{2}} \frac{x^{2}}{(2-4 x)^{2}}=\frac{2}{(2-4 x)^{2}}
$$

